6.5 Properties of Logarithms

Learning Standards HSA-SSE.A. 2 HSF-LE.A. 4

CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to understand and use stated assumptions, definitions, and previously established results.

Essential Question How can you use properties of exponents to derive properties of logarithms?

Let

$$
x=\log _{b} m \quad \text { and } \quad y=\log _{b} n
$$

The corresponding exponential forms of these two equations are

$$
b^{x}=m \quad \text { and } \quad b^{y}=n
$$

EXPLORATION 1 Product Property of Logarithms

Work with a partner. To derive the Product Property, multiply m and n to obtain

$$
m n=b^{x} b^{y}=b^{x+y}
$$

The corresponding logarithmic form of $m n=b^{x+y}$ is $\log _{b} m n=x+y$. So,

$$
\log _{b} m n=\square . \quad \text { Product Property of Logarithms }
$$

EXPLORATION 2 Quotient Property of Logarithms

Work with a partner. To derive the Quotient Property, divide m by n to obtain

$$
\frac{m}{n}=\frac{b^{x}}{b^{y}}=b^{x-y}
$$

The corresponding logarithmic form of $\frac{m}{n}=b^{x-y}$ is $\log _{b} \frac{m}{n}=x-y$. So,

$$
\log _{b} \frac{m}{n}=\square \quad \text { Quotient Property of Logarithms }
$$

EXPLORATION 3 Power Property of Logarithms

Work with a partner. To derive the Power Property, substitute b^{x} for m in the expression $\log _{b} m^{n}$, as follows.

$$
\begin{aligned}
\log _{b} m^{n} & =\log _{b}\left(b^{x}\right)^{n} \\
& =\log _{b} b^{n x} \\
& =n x
\end{aligned}
$$

Substitute b^{x} for m.

Power of a Power Property of Exponents
Inverse Property of Logarithms
So, substituting $\log _{b} m$ for x, you have
$\log _{b} m^{n}=$ \square Power Property of Logarithms

Communicate Your Answer

4. How can you use properties of exponents to derive properties of logarithms?
5. Use the properties of logarithms that you derived in Explorations $1-3$ to evaluate each logarithmic expression.
a. $\log _{4} 16^{3}$
b. $\log _{3} 81^{-3}$
c. $\ln e^{2}+\ln e^{5}$
d. $2 \ln e^{6}-\ln e^{5}$
e. $\log _{5} 75-\log _{5} 3$
f. $\log _{4} 2+\log _{4} 32$

6.5 Lesson

Core Vocabulary

Previous

base
properties of exponents

STUDY TIP

These three properties of logarithms correspond to these three properties of exponents.

$$
a^{m} a^{n}=a^{m+n}
$$

$\frac{a^{m}}{a^{n}}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$

What You Will Learn

Use the properties of logarithms to evaluate logarithms.
Use the properties of logarithms to expand or condense logarithmic expressions.
Use the change-of-base formula to evaluate logarithms.

Properties of Logarithms

You know that the logarithmic function with base b is the inverse function of the exponential function with base b. Because of this relationship, it makes sense that logarithms have properties similar to properties of exponents.

Core Concept

Properties of Logarithms

Let b, m, and n be positive real numbers with $b \neq 1$.
Product Property $\quad \log _{b} m n=\log _{b} m+\log _{b} n$
Quotient Property $\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
Power Property $\quad \log _{b} m^{n}=n \log _{b} m$

EXAMPLE 1 Using Properties of Logarithms

Use $\log _{2} 3 \approx 1.585$ and $\log _{2} 7 \approx 2.807$ to evaluate each logarithm.
a. $\log _{2} \frac{3}{7}$
b. $\log _{2} 21$
c. $\log _{2} 49$

SOLUTION

a. $\log _{2} \frac{3}{7}=\log _{2} 3-\log _{2} 7$
$\approx 1.585-2.807 \quad$ Use the given values of $\log _{2} 3$ and $\log _{2} 7$.
$=-1.222 \quad$ Subtract.
b. $\log _{2} 21=\log _{2}(3 \cdot 7)$

$$
=\log _{2} 3+\log _{2} 7
$$

$$
\approx 1.585+2.807
$$

$$
=4.392
$$

$$
\text { c. } \begin{aligned}
\log _{2} 49 & =\log _{2} 7^{2} & & \text { Write } 49 \text { as } 7^{2} . \\
& =2 \log _{2} 7 & & \text { Power Property } \\
& \approx 2(2.807) & & \text { Use the given value } \log _{2} 7 . \\
& =5.614 & & \text { Multiply. }
\end{aligned}
$$

Monitoring Progress (i)) Help in English and Spanish at BigldeasMath.com

Use $\log _{6} 5 \approx 0.898$ and $\log _{6} 8 \approx 1.161$ to evaluate the logarithm.

1. $\log _{6} \frac{5}{8}$
2. $\log _{6} 40$
3. $\log _{6} 64$
4. $\log _{6} 125$

Rewriting Logarithmic Expressions

You can use the properties of logarithms to expand and condense logarithmic expressions.

EXAMPLE 2 Expanding a Logarithmic Expression

STUDY TIP

When you are expanding or condensing an expression involving logarithms, you can assume that any variables - are positive.

Expand $\ln \frac{5 x^{7}}{y}$.

SOLUTION

$$
\begin{aligned}
\ln \frac{5 x^{7}}{y} & =\ln 5 x^{7}-\ln y & & \text { Quotient Property } \\
& =\ln 5+\ln x^{7}-\ln y & & \text { Product Property } \\
& =\ln 5+7 \ln x-\ln y & & \text { Power Property }
\end{aligned}
$$

EXAMPLE 3 Condensing a Logarithmic Expression

Condense $\log 9+3 \log 2-\log 3$.

SOLUTION

$$
\begin{aligned}
\log 9+3 \log 2-\log 3 & =\log 9+\log 2^{3}-\log 3 & & \text { Power Property } \\
& =\log \left(9 \cdot 2^{3}\right)-\log 3 & & \text { Product Property } \\
& =\log \frac{9 \cdot 2^{3}}{3} & & \text { Quotient Property } \\
& =\log 24 & & \text { Simplify. }
\end{aligned}
$$

Monitoring Progress

Expand the logarithmic expression.
5. $\log _{6} 3 x^{4}$
6. $\ln \frac{5}{12 x}$

Condense the logarithmic expression.

7. $\log x-\log 9$
8. $\ln 4+3 \ln 3-\ln 12$

Change-of-Base Formula

Logarithms with any base other than 10 or e can be written in terms of common or natural logarithms using the change-of-base formula. This allows you to evaluate any logarithm using a calculator.

Core Concept

Change-of-Base Formula

If a, b, and c are positive real numbers with $b \neq 1$ and $c \neq 1$, then

$$
\log _{c} a=\frac{\log _{b} a}{\log _{b} c}
$$

In particular, $\log _{c} a=\frac{\log a}{\log c}$ and $\log _{c} a=\frac{\ln a}{\ln c}$.

EXAMPLE 4 Changing a Base Using Common Logarithms

ANOTHER WAY

In Example 4, $\log _{3} 8$ can be evaluated using natural logarithms.
$\log _{3} 8=\frac{\ln 8}{\ln 3} \approx 1.893$
Notice that you get the same answer whether you use natural logarithms or common logarithms in the change-of-base formula.

Evaluate $\log _{3} 8$ using common logarithms.

SOLUTION

$$
\begin{aligned}
\log _{3} 8 & =\frac{\log 8}{\log 3} & & \log _{c} a=\frac{\log a}{\log c} \\
& \approx \frac{0.9031}{0.4771} \approx 1.893 & & \text { Use a calculator. Then divide. }
\end{aligned}
$$

EXAMPLE 5 Changing a Base Using Natural Logarithms

Evaluate $\log _{6} 24$ using natural logarithms.

SOLUTION

$$
\begin{aligned}
\log _{6} 24 & =\frac{\ln 24}{\ln 6} & & \log _{c} a=\frac{\ln a}{\ln c} \\
& \approx \frac{3.1781}{1.7918} \approx 1.774 & & \text { Use a calculator. Then divide. }
\end{aligned}
$$

EXAMPLE 6 Solving a Real-Life Problem

For a sound with intensity I (in watts per square meter), the loudness $L(I)$ of the sound (in decibels) is given by the function

$$
L(I)=10 \log \frac{I}{I_{0}}
$$

where I_{0} is the intensity of a barely audible sound (about 10^{-12} watts per square meter). An artist in a recording studio turns up the volume of a track so that the intensity of the sound doubles. By how many decibels does the loudness increase?

SOLUTION

Let I be the original intensity, so that $2 I$ is the doubled intensity.

$$
\begin{aligned}
\text { increase in loudness } & =L(2 I)-L(I) & & \text { Write an expression. } \\
& =10 \log \frac{2 I}{I_{0}}-10 \log \frac{I}{I_{0}} & & \text { Substitute. } \\
& =10\left(\log \frac{2 I}{I_{0}}-\log \frac{I}{I_{0}}\right) & & \text { Distributive Property } \\
& =10\left(\log 2+\log \frac{I}{I_{0}}-\log \frac{I}{I_{0}}\right) & & \text { Product Property } \\
& =10 \log 2 & & \text { Simplify. }
\end{aligned}
$$

The loudness increases by $10 \log 2$ decibels, or about 3 decibels.

Monitoring Progress (B)) Help in English and Spanish at BigldeasMath.com

Use the change-of-base formula to evaluate the logarithm.
9. $\log _{5} 8$
10. $\log _{8} 14$
11. $\log _{26} 9$
12. $\log _{12} 30$
13. WHAT IF? In Example 6, the artist turns up the volume so that the intensity of the sound triples. By how many decibels does the loudness increase?

- Vocabulary and Core Concept Check

1. COMPLETE THE SENTENCE To condense the expression $\log _{3} 2 x+\log _{3} y$, you need to use the
\qquad Property of Logarithms.
2. WRITING Describe two ways to evaluate $\log _{7} 12$ using a calculator.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-8, use $\log _{7} 4 \approx 0.712$ and $\log _{7} 12 \approx 1.277$ to evaluate the logarithm. (See Example 1.)
3. $\log _{7} 3$
4. $\log _{7} 48$
5. $\log _{7} 16$
6. $\log _{7} 64$
7. $\log _{7} \frac{1}{4}$
8. $\log _{7} \frac{1}{3}$

In Exercises 9-12, match the expression with the logarithm that has the same value. Justify your answer.
9. $\log _{3} 6-\log _{3} 2$
A. $\log _{3} 64$
10. $2 \log _{3} 6$
B. $\log _{3} 3$
11. $6 \log _{3} 2$
C. $\log _{3} 12$
12. $\log _{3} 6+\log _{3} 2$
D. $\log _{3} 36$

In Exercises 13-20, expand the logarithmic expression. (See Example 2.)
13. $\log _{3} 4 x$
14. $\log _{8} 3 x$
15. $\log 10 x^{5}$
16. $\ln 3 x^{4}$
17. $\ln \frac{x}{3 y}$
18. $\ln \frac{6 x^{2}}{y^{4}}$
19. $\log _{7} 5 \sqrt{x}$
20. $\log _{5} \sqrt[3]{x^{2} y}$

ERROR ANALYSIS In Exercises 21 and 22, describe and correct the error in expanding the logarithmic expression.
21.

$$
\log _{2} 5 x=\left(\log _{2} 5\right)\left(\log _{2} x\right)
$$

22.

x

$$
\ln 8 x^{3}=3 \ln 8+\ln x
$$

In Exercises 23-30, condense the logarithmic expression. (See Example 3.)
23. $\log _{4} 7-\log _{4} 10$
24. $\ln 12-\ln 4$
25. $6 \ln x+4 \ln y$
26. $2 \log x+\log 11$
27. $\log _{5} 4+\frac{1}{3} \log _{5} x$
28. $6 \ln 2-4 \ln y$
29. $5 \ln 2+7 \ln x+4 \ln y$
30. $\log _{3} 4+2 \log _{3} \frac{1}{2}+\log _{3} x$
31. REASONING Which of the following is not equivalent to $\log _{5} \frac{y^{4}}{3 x}$? Justify your answer.
(A) $4 \log _{5} y-\log _{5} 3 x$
(B) $4 \log _{5} y-\log _{5} 3+\log _{5} x$
(C) $4 \log _{5} y-\log _{5} 3-\log _{5} x$
(D) $\log _{5} y^{4}-\log _{5} 3-\log _{5} x$
32. REASONING Which of the following equations is correct? Justify your answer.
(A) $\log _{7} x+2 \log _{7} y=\log _{7}\left(x+y^{2}\right)$
(B) $9 \log x-2 \log y=\log \frac{x^{9}}{y^{2}}$
(C) $5 \log _{4} x+7 \log _{2} y=\log _{6} x^{5} y^{7}$
(D) $\log _{9} x-5 \log _{9} y=\log _{9} \frac{x}{5 y}$

In Exercises 33-40, use the change-of-base formula to evaluate the logarithm. (See Examples 4 and 5.)
33. $\log _{4} 7$
34. $\log _{5} 13$
35. $\log _{9} 15$
36. $\log _{8} 22$
37. $\log _{6} 17$
38. $\log _{2} 28$
39. $\log _{7} \frac{3}{16}$
40. $\log _{3} \frac{9}{40}$
41. MAKING AN ARGUMENT Your friend claims you can use the change-of-base formula to graph $y=\log _{3} x$ using a graphing calculator. Is your friend correct? Explain your reasoning.
42. HOW DO YOU SEE IT? Use the graph to determine the value of $\frac{\log 8}{\log 2}$.

MODELING WITH MATHEMATICS In Exercises 43 and 44, use the function $L(I)$ given in Example 6.
43. The blue whale can produce sound with an intensity that is 1 million times greater than the intensity of the loudest sound a human can make. Find the difference in the decibel levels of the sounds made by a blue whale and a human. (See Example 6.)

44. The intensity of the sound of a certain television advertisement is 10 times greater than the intensity of the television program. By how many decibels does the loudness increase?

45. REWRITING A FORMULA Under certain conditions, the wind speed s (in knots) at an altitude of h meters above a grassy plain can be modeled by the function

$$
s(h)=2 \ln 100 h
$$

a. By what amount does the wind speed increase when the altitude doubles?
b. Show that the given function can be written in terms of common logarithms as

$$
s(h)=\frac{2}{\log e}(\log h+2)
$$

46. THOUGHT PROVOKING Determine whether the formula

$$
\log _{b}(M+N)=\log _{b} M+\log _{b} N
$$

is true for all positive, real values of M, N, and b (with $b \neq 1$). Justify your answer.
47. USING STRUCTURE Use the properties of exponents to prove the change-of-base formula. (Hint: Let $x=\log _{b} a, y=\log _{b} c$, and $z=\log _{c} a$.)
48. CRITICAL THINKING Describe three ways to transform the graph of $f(x)=\log x$ to obtain the graph of $g(x)=\log 100 x-1$. Justify your answers.

Maintaining Mathematical Proficiency

Solve the inequality by graphing. (Section 3.6)
49. $x^{2}-4>0$
50. $2(x-6)^{2}-5 \geq 37$
51. $x^{2}+13 x+42<0$
52. $-x^{2}-4 x+6 \leq-6$

Solve the equation by graphing the related system of equations. (Section 3.5)
53. $4 x^{2}-3 x-6=-x^{2}+5 x+3$
54. $-(x+3)(x-2)=x^{2}-6 x$
55. $2 x^{2}-4 x-5=-(x+3)^{2}+10$
56. $-(x+7)^{2}+5=(x+10)^{2}-3$

