## **6.2** The Natural Base e



Learning Standards HSF-IF.C.7e HSF-LE.B.5

### USING TOOLS STRATEGICALLY

To be proficient in math, you need to use technological tools to explore and deepen your understanding of concepts.

## **Essential Question** What is the natural base e?

So far in your study of mathematics, you have worked with special numbers such as  $\pi$  and i. Another special number is called the *natural base* and is denoted by e. The natural base e is irrational, so you cannot find its exact value.

## **EXPLORATION 1** Approximating the Natural Base e

Work with a partner. One way to approximate the natural base e is to approximate the sum

$$1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \cdots$$

Use a spreadsheet or a graphing calculator to approximate this sum. Explain the steps you used. How many decimal places did you use in your approximation?

### **EXPLORATION 2** Approximating the Natural Base e

**Work with a partner.** Another way to approximate the natural base e is to consider the expression

$$\left(1+\frac{1}{x}\right)^x$$
.

As *x* increases, the value of this expression approaches the value of *e*. Copy and complete the table. Then use the results in the table to approximate *e*. Compare this approximation to the one you obtained in Exploration 1.

| X                              | 10 <sup>1</sup> | $10^{2}$ | 10 <sup>3</sup> | 104 | 10 <sup>5</sup> | 10 <sup>6</sup> |
|--------------------------------|-----------------|----------|-----------------|-----|-----------------|-----------------|
| $\left(1+\frac{1}{x}\right)^x$ |                 |          |                 |     |                 |                 |

## **EXPLORATION 3** Graphing a Natural Base Function

**Work with a partner.** Use your approximate value of e in Exploration 1 or 2 to complete the table. Then sketch the graph of the *natural base exponential function*  $y = e^x$ . You can use a graphing calculator and the  $e^x$  key to check your graph. What are the domain and range of  $y = e^x$ ? Justify your answers.

| X         | -2 | -1 | 0 | 1 | 2 |
|-----------|----|----|---|---|---|
| $y = e^x$ |    |    |   |   |   |

## Communicate Your Answer

- **4.** What is the natural base e?
- **5.** Repeat Exploration 3 for the natural base exponential function  $y = e^{-x}$ . Then compare the graph of  $y = e^x$  to the graph of  $y = e^{-x}$ .
- **6.** The natural base e is used in a wide variety of real-life applications. Use the Internet or some other reference to research some of the real-life applications of e.

## Lesson

## Core Vocabulary

natural base e, p. 304

#### **Previous**

irrational number properties of exponents percent increase percent decrease compound interest

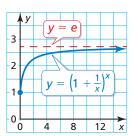
### What You Will Learn

- Define and use the natural base e.
- Graph natural base functions.
- Solve real-life problems.

### The Natural Base e

The history of mathematics is marked by the discovery of special numbers, such as  $\pi$  and i. Another special number is denoted by the letter e. The number is called the **natural base** e, or the *Euler number*, after its discoverer,

Leonhard Euler (1707–1783). The expression  $\left(1+\frac{1}{r}\right)^{3}$ approaches e as x increases, as shown in the graph and table.



| x                              | 101     | $10^{2}$ | 10 <sup>3</sup> | 104     | 10 <sup>5</sup> | 106     |
|--------------------------------|---------|----------|-----------------|---------|-----------------|---------|
| $\left(1+\frac{1}{x}\right)^x$ | 2.59374 | 2.70481  | 2.71692         | 2.71815 | 2.71827         | 2.71828 |

# **5** Core Concept

### The Natural Base e

The natural base e is irrational. It is defined as follows:

As x approaches  $+\infty$ ,  $\left(1+\frac{1}{x}\right)^x$  approaches  $e\approx 2.71828182846$ .

## **EXAMPLE 1**

## **Simplifying Natural Base Expressions**

Simplify each expression.

**a.** 
$$e^3 \cdot e^6$$

**b.** 
$$\frac{16e^5}{4e^4}$$

**c.** 
$$(3e^{-4x})^2$$

### **SOLUTION**

**a.** 
$$e^3 \cdot e^6 = e^{3+6}$$

$$= e^{9}$$

**a.** 
$$e^3 \cdot e^6 = e^{3+6}$$
 **b.**  $\frac{16e^5}{4e^4} = 4e^{5-4}$ 

$$=4\epsilon$$

**c.** 
$$(3e^{-4x})^2 = 3^2(e^{-4x})^2$$

$$=9e^{-8x}$$

$$=\frac{9}{e^{8x}}$$

## **Monitoring Progress**



Help in English and Spanish at BigldeasMath.com

Simplify the expression.

1. 
$$e^7 \cdot e^4$$

2. 
$$\frac{24e^8}{8e^5}$$

3. 
$$(10e^{-3x})^3$$

Check

You can use a calculator to check the equivalence of numerical expressions involving e.

8103.083928

8103.083928

e^(3)\*e^(6)

e^(9)

## **Graphing Natural Base Functions**

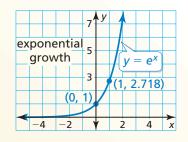
# G Core Concept

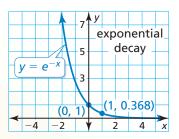
### **Natural Base Functions**

A function of the form  $y = ae^{rx}$  is called a *natural base exponential function*.

- When a > 0 and r > 0, the function is an exponential growth function.
- When a > 0 and r < 0, the function is an exponential decay function.

The graphs of the basic functions  $y = e^x$  and  $y = e^{-x}$  are shown.





### **EXAMPLE 2**

### **Graphing Natural Base Functions**

Tell whether each function represents exponential growth or exponential decay. Then graph the function.

**a.** 
$$y = 3e^x$$

LOOKING FOR **STRUCTURE** 

You can rewrite natural

to find percent rates of change. In Example 2(b),  $f(x) = e^{-0.5x}$ 

> $= (e^{-0.5})^x$  $\approx (0.6065)^{x}$  $= (1 - 0.3935)^{x}$ .

So, the percent decrease is

about 39.35%.

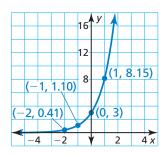
base exponential functions

**b.** 
$$f(x) = e^{-0.5x}$$

### **SOLUTION**

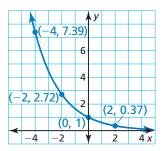
**a.** Because a = 3 is positive and r = 1 is positive, the function is an exponential growth function. Use a table to graph the function.

| х | -2   | -1   | 0 | 1    |
|---|------|------|---|------|
| у | 0.41 | 1.10 | 3 | 8.15 |



**b.** Because a = 1 is positive and r = -0.5 is negative, the function is an exponential decay function. Use a table to graph the function.

| х | -4   | -2   | 0 | 2    |
|---|------|------|---|------|
| У | 7.39 | 2.72 | 1 | 0.37 |



## **Monitoring Progress**



Help in English and Spanish at BigldeasMath.com

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

**4.** 
$$y = \frac{1}{2}e^x$$

**5.** 
$$y = 4e^{-x}$$

**6.** 
$$f(x) = 2e^{2x}$$

## **Solving Real-Life Problems**

You have learned that the balance of an account earning compound interest is given by  $A = P\left(1 + \frac{r}{n}\right)^{nt}$ . As the frequency *n* of compounding approaches positive infinity, the compound interest formula approximates the following formula.

# G Core Concept

### **Continuously Compounded Interest**

When interest is compounded *continuously*, the amount A in an account after t years is given by the formula

$$A = Pe^{rt}$$

where P is the principal and r is the annual interest rate expressed as a decimal.

#### EXAMPLE 3 **Modeling with Mathematics**

You and your friend each have accounts that earn annual interest compounded continuously. The balance A (in dollars) of your account after t years can be modeled by  $A = 4500e^{0.04t}$ . The graph shows the balance of your friend's account over time. Which account has a greater principal? Which has a greater balance after 10 years?

### **SOLUTION**

- 1. Understand the Problem You are given a graph and an equation that represent account balances. You are asked to identify the account with the greater principal and the account with the greater balance after 10 years.
- 2. Make a Plan Use the equation to find your principal and account balance after 10 years. Then compare these values to the graph of your friend's account.
- **3. Solve the Problem** The equation  $A = 4500e^{0.04t}$  is of the form  $A = Pe^{rt}$ , where P = 4500. So, your principal is \$4500. Your balance A when t = 10 is

$$A = 4500e^{0.04(10)} = $6713.21.$$

Because the graph passes through (0, 4000), your friend's principal is \$4000. The graph also shows that the balance is about \$7250 when t = 10.

- So, your account has a greater principal, but your friend's account has a greater balance after 10 years.
- 4. Look Back Because your friend's account has a lesser principal but a greater balance after 10 years, the average rate of change from t = 0 to t = 10 should be greater for your friend's account than for your account.

**Your account:** 
$$\frac{A(10) - A(0)}{10 - 0} = \frac{6713.21 - 4500}{10} = 221.321$$

**Your friend's account:** 
$$\frac{A(10) - A(0)}{10 - 0} \approx \frac{7250 - 4000}{10} = 325$$

## MAKING CONJECTURES

You can also use this reasoning to conclude that your friend's account has a greater annual interest rate than your account.

**Your Friend's Account** 

12,000

10,000 8,000

6,000

4,000

2,000

(0.4000)

8 12

Year

16

Balance (dollars)

# Monitoring Progress Help in English and Spanish at BigldeasMath.com



7. You deposit \$4250 in an account that earns 5% annual interest compounded continuously. Compare the balance after 10 years with the accounts in Example 3.

# Vocabulary and Core Concept Check

- **1. VOCABULARY** What is the Euler number?
- **2.** WRITING Tell whether the function  $f(x) = \frac{1}{3}e^{4x}$  represents exponential growth or exponential decay. Explain.

## Monitoring Progress and Modeling with Mathematics

In Exercises 3–12, simplify the expression.

(See Example 1.)

3. 
$$e^3 \cdot e^5$$

**4.** 
$$e^{-4} \cdot e^6$$

5. 
$$\frac{11e^9}{22e^{10}}$$

**6.** 
$$\frac{27e^7}{3e^4}$$

7. 
$$(5e^{7x})^4$$

**8.** 
$$(4e^{-2x})^3$$

**9.** 
$$\sqrt{9e^{6x}}$$

**10.** 
$$\sqrt[3]{8e^{12x}}$$

11. 
$$e^{x} \cdot e^{-6x} \cdot e^{8}$$

**11.** 
$$e^x \cdot e^{-6x} \cdot e^8$$
 **12.**  $e^x \cdot e^4 \cdot e^{x+3}$ 

**ERROR ANALYSIS** In Exercises 13 and 14, describe and correct the error in simplifying the expression.

13.



$$(4e^{3x})^2 = 4e^{(3x)(2)}$$
$$= 4e^{6x}$$

14.



$$\frac{e^{5x}}{e^{-2x}} = e^{5x - 2x}$$

$$=e^{3x}$$

In Exercises 15–22, tell whether the function represents exponential growth or exponential decay. Then graph the function. (See Example 2.)

**15.** 
$$y = e^{3x}$$

**16.** 
$$y = e^{-2x}$$

**17.** 
$$y = 2e^{-x}$$

**18.** 
$$y = 3e^{2x}$$

**19.** 
$$y = 0.5e^x$$

**20.** 
$$y = 0.25e^{-3x}$$

**21.** 
$$y = 0.4e^{-0.25x}$$
 **22.**  $y = 0.6e^{0.5x}$ 

**22.** 
$$y = 0.6e^{0.53}$$

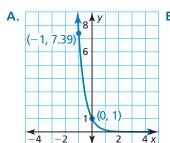
**ANALYZING EQUATIONS** In Exercises 23–26, match the function with its graph. Explain your reasoning.

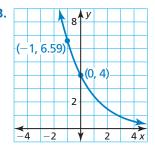
**23.** 
$$y = e^{2x}$$

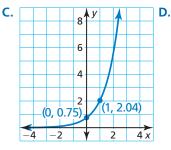
**24.** 
$$y = e^{-2x}$$

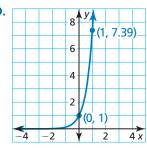
**25.** 
$$y = 4e^{-0.5x}$$

**26.** 
$$y = 0.75e^x$$









**USING STRUCTURE** In Exercises 27–30, use the properties of exponents to rewrite the function in the form  $y = a(1 + r)^t$  or  $y = a(1 - r)^t$ . Then find the percent rate of change.

**27.** 
$$y = e^{-0.25t}$$

**28.** 
$$y = e^{-0.75t}$$

**29.** 
$$y = 2e^{0.4t}$$

**30.** 
$$v = 0.5e^{0.8t}$$

**USING TOOLS** In Exercises 31–34, use a table of values or a graphing calculator to graph the function. Then identify the domain and range.

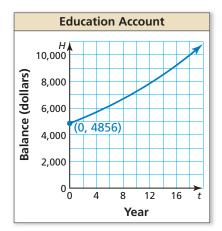
**31.** 
$$y = e^{x-2}$$

**32.** 
$$y = e^{x+1}$$

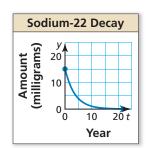
**33.** 
$$y = 2e^x + 1$$

**33.** 
$$y = 2e^x + 1$$
 **34.**  $y = 3e^x - 5$ 

35. MODELING WITH MATHEMATICS Investment accounts for a house and education earn annual interest compounded continuously. The balance H(in dollars) of the house fund after t years can be modeled by  $H = 3224e^{0.05t}$ . The graph shows the balance in the education fund over time. Which account has the greater principal? Which account has a greater balance after 10 years? (See Example 3.)



36. MODELING WITH MATHEMATICS Tritium and sodium-22 decay over time. In a sample of tritium, the amount y (in milligrams) remaining after t years is given by  $y = 10e^{-0.0562t}$ . The graph shows the amount of sodium-22 in a sample over time. Which sample started with a greater amount? Which has a greater amount after 10 years?



**37. OPEN-ENDED** Find values of a, b, r, and q such that  $f(x) = ae^{rx}$  and  $g(x) = be^{qx}$  are exponential decay functions, but  $\frac{f(x)}{g(x)}$  represents exponential growth.

- **38. THOUGHT PROVOKING** Explain why  $A = P\left(1 + \frac{r}{n}\right)^{n}$ approximates  $A = Pe^{rt}$  as n approaches positive infinity.
- **39. WRITING** Can the natural base *e* be written as a ratio of two integers? Explain.
- **40. MAKING AN ARGUMENT** Your friend evaluates  $f(x) = e^{-x}$  when x = 1000 and concludes that the graph of y = f(x) has an x-intercept at (1000, 0). Is your friend correct? Explain your reasoning.
- **41. DRAWING CONCLUSIONS** You invest \$2500 in an account to save for college. Account 1 pays 6% annual interest compounded quarterly. Account 2 pays 4% annual interest compounded continuously. Which account should you choose to obtain the greater amount in 10 years? Justify your answer.
- **42. HOW DO YOU SEE IT?** Use the graph to complete each statement.
  - **a.** f(x) approaches \_ as x approaches  $+\infty$ .
  - **b.** f(x) approaches \_ as x approaches  $-\infty$ .



- **43. PROBLEM SOLVING** The growth of *Mycobacterium* tuberculosis bacteria can be modeled by the function  $N(t) = ae^{0.166t}$ , where N is the number of cells after t hours and a is the number of cells when t = 0.
  - **a.** At 1:00 P.M., there are 30 M. tuberculosis bacteria in a sample. Write a function that gives the number of bacteria after 1:00 P.M.
  - **b.** Use a graphing calculator to graph the function in part (a).
  - c. Describe how to find the number of cells in the sample at 3:45 P.M.

# Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Write the number in scientific notation. (Skills Review Handbook)

- **44.** 0.006
- **45.** 5000
- **46.** 26,000,000
- **47.** 0.000000047

Find the inverse of the function. Then graph the function and its inverse. (Section 5.6)

**48.** y = 3x + 5

**49.**  $y = x^2 - 1, x \le 0$ 

**50.**  $y = \sqrt{x+6}$ 

**51.**  $y = x^3 - 2$