5.1 nth Roots and Rational Exponents

Essential Question How can you use a rational exponent to

represent a power involving a radical?

۲

Previously, you learned that the *n*th root of *a* can be represented as

 $\sqrt[n]{a} = a^{1/n}$ Definition of rational exponent

for any real number *a* and integer *n* greater than 1.

EXPLORATION 1

Exploring the Definition of a **Rational Exponent**

Use a calculator to show that each statement is true

CONSTF	RUCTING	a
VIABLE	ARGUMENTS	

To be proficient in math, you need to understand and use stated definitions and previously established results.

work with a partner.	Use a calculator to show that	t each statement is true.
a. $\sqrt{9} = 9^{1/2}$	b. $\sqrt{2} = 2^{1/2}$	c. $\sqrt[3]{8} = 8^{1/3}$
d. $\sqrt[3]{3} = 3^{1/3}$	e. $\sqrt[4]{16} = 16^{1/4}$	f. $\sqrt[4]{12} = 12^{1/4}$

EXPLORATION 2

Writing Expressions in **Rational Exponent Form**

Work with a partner. Use the definition of a rational exponent and the properties of exponents to write each expression as a base with a single rational exponent. Then use a calculator to evaluate each expression. Round your answer to two decimal places.

Sample

	$\left(\sqrt[3]{4}\right)^2 = (4^{1/3})^2$	'	4^(2/3)	2.5198421	
	$= 4^{2/3}$				
	≈ 2.52				
a.	$(\sqrt{5})^{3}$	b. $(\sqrt[4]{4})^2$		c. (*	$\sqrt[3]{9}^{2}$
d.	$(\sqrt[5]{10})^4$	e. $(\sqrt{15})^3$		f. (*	_{∛27})

EXPLORATION 3

Writing Expressions in Radical Form

Work with a partner. Use the properties of exponents and the definition of a rational exponent to write each expression as a radical raised to an exponent. Then use a calculator to evaluate each expression. Round your answer to two decimal places.

Sa	mple	$5^{2/3} = (5^{1/3})^2 = \left(\sqrt[3]{5}\right)^2$	≈ 2.92		
a.	82/3	b.	6 ^{5/2}	c.	123/4
d.	10 ^{3/2}	e.	16 ^{3/2}	f.	206/5

Communicate Your Answer

4. How can you use a rational exponent to represent a power involving a radical?

5. Evaluate each expression *without* using a calculator. Explain your reasoning.

a.	4 ^{3/2}	b.	324/5	c.	625 ^{3/4}
d.	49 ^{3/2}	e.	1254/3	f.	1006/3

Section 5.1 nth Roots and Rational Exponents 237

()

۲

5.1 Lesson

Core Vocabulary

nth root of a, p. 238 index of a radical, p. 238

Previous

square root cube root exponent

UNDERSTANDING MATHEMATICAL TERMS

 (\bullet)

When *n* is even and a > 0, there are two real roots. The positive root is called the *principal root*.

What You Will Learn

- Find nth roots of numbers.
- Evaluate expressions with rational exponents.

۲

Solve equations using *n*th roots.

nth Roots

You can extend the concept of a square root to other types of roots. For example, 2 is a cube root of 8 because $2^3 = 8$. In general, for an integer *n* greater than 1, if $b^n = a$, then *b* is an *n*th root of *a*. An *n*th root of *a* is written as $\sqrt[n]{a}$, where *n* is the **index** of the radical.

You can also write an *n*th root of *a* as a power of *a*. If you assume the Power of a Power Property applies to rational exponents, then the following is true.

$$(a^{1/2})^2 = a^{(1/2) \cdot 2} = a^1 = a$$
$$(a^{1/3})^3 = a^{(1/3) \cdot 3} = a^1 = a$$
$$(a^{1/4})^4 = a^{(1/4) \cdot 4} = a^1 = a$$

Because $a^{1/2}$ is a number whose square is a, you can write $\sqrt{a} = a^{1/2}$. Similarly, $\sqrt[3]{a} = a^{1/3}$ and $\sqrt[4]{a} = a^{1/4}$. In general, $\sqrt[n]{a} = a^{1/n}$ for any integer n greater than 1.

ら Core Concept

Real nth Roots of a

Let *n* be an integer (n > 1) and let *a* be a real number.

<i>n</i> is an even integer.	<i>n</i> is an odd integer.		
a < 0 No real <i>n</i> th roots	$a < 0$ One real <i>n</i> th root: $\sqrt[n]{a} = a^{1/n}$		
$a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = 0$	$a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = 0$		
$a > 0$ Two real <i>n</i> th roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$	$a > 0$ One real <i>n</i> th root: $\sqrt[n]{a} = a^{1/n}$		

EXAMPLE 1

Finding nth Roots

Find the indicated real *n*th root(s) of *a*.

SOLUTION

- **a.** Because n = 3 is odd and a = -216 < 0, -216 has one real cube root. Because $(-6)^3 = -216$, you can write $\sqrt[3]{-216} = -6$ or $(-216)^{1/3} = -6$.
- **b.** Because n = 4 is even and a = 81 > 0, 81 has two real fourth roots. Because $3^4 = 81$ and $(-3)^4 = 81$, you can write $\pm \sqrt[4]{81} = \pm 3$ or $\pm 81^{1/4} = \pm 3$.

Monitoring Progress

Find the indicated real *n*th root(s) of *a*.

1. $n = 4, a = 16$	2. $n = 2, a = -49$
3. $n = 3, a = -125$	4. <i>n</i> = 5, <i>a</i> = 243

238 Chapter 5 Rational Exponents and Radical Functions

۲

Rational Exponents

۲

A rational exponent does not have to be of the form $\frac{1}{n}$. Other rational numbers, such as $\frac{3}{2}$ and $-\frac{1}{2}$, can also be used as exponents. Two properties of rational exponents are shown below.

🔄 Core Concept

Rational Exponents

Let $a^{1/n}$ be an *n*th root of *a*, and let *m* be a positive integer.

 $a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$ $a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$

EXAMPLE 2

E 2 Evaluating Expressions with Rational Exponents

Evaluate each expression.

b.
$$32^{-3/5}$$

SOLUTION

a. 16^{3/2}

Rational Exponent Form
a.
$$16^{3/2} = (16^{1/2})^3 = 4^3 = 64$$

b. $32^{-3/5} = \frac{1}{32^{3/5}} = \frac{1}{(32^{1/5})^3} = \frac{1}{2^3} = \frac{1}{8}$
Radical Form
 $16^{3/2} = (\sqrt{16})^3 = 4^3 = 64$
 $32^{-3/5} = \frac{1}{32^{3/5}} = \frac{1}{(\sqrt[5]{32})^3} = \frac{1}{2^3} = \frac{1}{8}$

COMMON ERROR

Be sure to use parentheses to enclose a rational exponent: $9^{(1/5)} \approx 1.55$. Without them, the calculator evaluates a power and then divides:

9^1/5 = 1.8.

When using a calculator to approximate an *n*th root, you may want to rewrite the *n*th root in rational exponent form.

EXAMPLE 3

Approximating Expressions with Rational Exponents

Evaluate each expression using a calculator. Round your answer to two decimal places.

a. 9^{1/5}

b. 12^{3/8}

c. $(\sqrt[4]{7})^3$

SOLUTION

a. $9^{1/5} \approx 1.55$

- **b.** $12^{3/8} \approx 2.54$
- **c.** Before evaluating $(\sqrt[4]{7})^3$, rewrite the expression in rational exponent form.

 $\left(\sqrt[4]{7}\right)^3 = 7^{3/4} \approx 4.30$

Evaluate the expression without using a calculator.

5. 4 ^{5/2} 6. 9 ^{-1/2} 7	. 81 ^{3/4}	8. 1 ⁷
---	----------------------------	--------------------------

Evaluate the expression using a calculator. Round your answer to two decimal places when appropriate.

9. $6^{2/5}$ 10. $64^{-2/3}$ 11. $(\sqrt[4]{16})^{\circ}$ 12. $(\sqrt[3]{-30})^{\circ}$

Section 5.1 *n*th Roots and Rational Exponents **239**

()

12

()

Solving Equations Using *n*th Roots

۲

To solve an equation of the form $u^n = d$, where u is an algebraic expression, take the *n*th root of each side.

EXAMPLE 4 Solving Equations Using *n*th Roots

Find the real solution(s) of (a) $4x^5 = 128$ and (b) $(x - 3)^4 = 21$.

SOLUTION a. $4x^5 = 128$ Write original equation. $x^5 = 32$ Divide each side by 4. $x = \sqrt[5]{32}$ Take fifth root of each side. x = 2Simplify. The solution is x = 2. **b.** $(x - 3)^4 = 21$ Write original equation. $x - 3 = \pm \sqrt[4]{21}$ Take fourth root of each side. $x = 3 \pm \sqrt[4]{21}$ Add 3 to each side. $x = 3 + \sqrt[4]{21}$ or $x = 3 - \sqrt[4]{21}$ Write solutions separately.

or $x \approx 0.86$ Use a calculator.

The solutions are $x \approx 5.14$ and $x \approx 0.86$.

EXAMPLE 5

 $x \approx 5.14$

Real-Life Application

A hospital purchases an ultrasound machine for \$50,000. The hospital expects the useful life of the machine to be 10 years, at which time its value will have depreciated to \$8000. The hospital uses the declining balances method for depreciation, so the annual depreciation rate r (in decimal form) is given by the formula

$$r = 1 - \left(\frac{S}{C}\right)^{1/n}.$$

In the formula, *n* is the useful life of the item (in years), *S* is the salvage value (in dollars), and C is the original cost (in dollars). What annual depreciation rate did the hospital use?

SOLUTION

The useful life is 10 years, so n = 10. The machine depreciates to \$8000, so S = 8000. The original cost is \$50,000, so C = 50,000. So, the annual depreciation rate is

$$r = 1 - \left(\frac{S}{C}\right)^{1/n} = 1 - \left(\frac{8000}{50,000}\right)^{1/10} = 1 - \left(\frac{4}{25}\right)^{1/10} \approx 0.167$$

The annual depreciation rate is about 0.167, or 16.7%.

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

Find the real solution(s) of the equation. Round your answer to two decimal places when appropriate.

13.
$$8x^3 = 64$$
 14. $\frac{1}{2}x^5 = 512$ **15.** $(x+5)^4 = 16$ **16.** $(x-2)^3 = -14$

17. WHAT IF? In Example 5, what is the annual depreciation rate when the salvage value is \$6000?

240 Chapter 5 **Rational Exponents and Radical Functions**

COMMON ERROR

nth roots of a.

When *n* is even and a > 0,

be sure to consider both the positive and negative

()

۲

 (\bullet)

5.1 Exercises

Dynamic Solutions available at BigIdeasMath.com

۲

Monitoring Progress and Modeling with Mathematics

In Exercises 5–10, find the indicated real *n*th root(s) of *a*. (See Example 1.)

5. $n = 3, a = 8$	6. $n = 5, a = -1$
7. $n = 2, a = 0$	8. <i>n</i> = 4, <i>a</i> = 256
9. $n = 5, a = -32$	10. $n = 6, a = -729$

In Exercises 11–18, evaluate the expression without using a calculator. (*See Example 2.*)

11.	641/6	12.	81/3
13.	25 ^{3/2}	14.	81 ^{3/4}
15.	(-243) ^{1/5}	16.	(-64) ^{4/3}
17.	8 ^{-2/3}	18.	16 ^{-7/4}

ERROR ANALYSIS In Exercises 19 and 20, describe and correct the error in evaluating the expression.

USING STRUCTURE In Exercises 21–24, match the equivalent expressions. Explain your reasoning.

21.	$\left(\sqrt[3]{5}\right)^4$	Α.	$5^{-1/4}$
22.	$\left(\sqrt[4]{5}\right)^3$	Β.	54/3
23.	$\frac{1}{\sqrt[4]{5}}$	С.	-51/4
24.	$-\sqrt[4]{5}$	D.	5 ^{3/4}

In Exercises 25–32, evaluate the expression using a calculator. Round your answer to two decimal places when appropriate. (*See Example 3.*)

25.	$\sqrt[5]{32,768}$	26.	$\sqrt[7]{1695}$
27.	25 ^{-1/3}	28.	851/6
29.	20,7364/5	30.	86 ^{-5/6}
31.	$(\sqrt[4]{187})^3$	32.	$(\sqrt[5]{-8})^8$

MATHEMATICAL CONNECTIONS In Exercises 33 and 34, find the radius of the figure with the given volume.

Section 5.1 *nth Roots and Rational Exponents* 241

۲

()

In Exercises 35–44, find the real solution(s) of the equation. Round your answer to two decimal places when appropriate. (*See Example 4.*)

35.	$x^3 = 125$	36.	$5x^3 = 1080$
37.	$(x + 10)^5 = 70$	38.	$(x-5)^4 = 256$
39.	$x^5 = -48$	40.	$7x^4 = 56$
41.	$x^6 + 36 = 100$	42.	$x^3 + 40 = 25$
43.	$\frac{1}{3}x^4 = 27$	44.	$\frac{1}{6}x^3 = -36$

45. MODELING WITH MATHEMATICS When the average price of an item increases from p_1 to p_2 over a period of *n* years, the annual rate of inflation *r* (in decimal form) is given by $r = \left(\frac{p_2}{p_1}\right)^{1/n} - 1$. Find the rate of

inflation for each item in the table. (See Example 5.)

Item	Price in 1913	Price in 2013
Potatoes (lb)	\$0.016	\$0.627
Ham (lb)	\$0.251	\$2.693
Eggs (dozen)	\$0.373	\$1.933

46. HOW DO YOU SEE IT? The graph of $y = x^n$ is shown in red. What can you conclude about the value of *n*? Determine the number of real *n*th roots of *a*. Explain your reasoning.

- **47. NUMBER SENSE** Between which two consecutive integers does $\sqrt[4]{125}$ lie? Explain your reasoning.
- **48. THOUGHT PROVOKING** In 1619, Johannes Kepler published his third law, which can be given by $d^3 = t^2$, where *d* is the mean distance (in astronomical units) of a planet from the Sun and *t* is the time (in years) it takes the planet to orbit the Sun. It takes Mars 1.88 years to orbit the Sun. Graph a possible location of Mars. Justify your answer. (The diagram shows the Sun at the origin of the *xy*-plane and a possible location of Earth.)

49. PROBLEM SOLVING A *weir* is a dam that is built across a river to regulate the flow of water. The flow rate Q (in cubic feet per second) can be calculated using the formula $Q = 3.367 \ell h^{3/2}$, where ℓ is the length (in feet) of the bottom of the spillway and h is the depth (in feet) of the water on the spillway. Determine the flow rate of a weir with a spillway that is 20 feet long and has a water depth of 5 feet.

50. REPEATED REASONING The mass of the particles that a river can transport is proportional to the sixth power of the speed of the river. A certain river normally flows at a speed of 1 meter per second. What must its speed be in order to transport particles that are twice as massive as usual? 10 times as massive? 100 times as massive?

-Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Simplify the expression.	(Skills Review Handbook)				
51. 5 • 5 ⁴	52. $\frac{4^2}{4^7}$	53. $(z^2)^{-3}$	54. $\left(\frac{3x}{2}\right)^4$		
Write the number in standard form. (Skills Review Handbook)					
55. 5×10^3		56. 4×10^{-2}			
57. 8.2×10^{-1}		58. 6.93 × 10 ⁶			

۲

242 Chapter 5 Rational Exponents and Radical Functions

()

۲